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Abstract. We study the magnetic properties of a site-disordered Anderson–Hubbard model
at half-filling on a simple cubic lattice, via a mapping of its low-frequency transverse spin
excitations onto those of an effective underlying Heisenberg model with self-consistently
determined exchange couplings. Exact in the strong-coupling limit, the mapping remains
accurate over the dominant region of the phase plane where the ground state is a disordered
antiferromagnet. The effect of disorder and interaction strength on the resultant exchange
couplings is examined in detail, and rationalized microscopically. Frustration is found to occur,
even within the antiferromagnetic phase, although the ground state is shown to be stable with
respect to zero-point quantum spin fluctuations. To probe finite-temperature magnetic properties,
an Onsager reaction-field approach to the effective Heisenberg model in the paramagnetic phase
is employed. We focus on the effect of disorder on the Néel temperature and the nature of the
thermal transition to the ordered phase.

1. Introduction

One of the most challenging problems in the study of disordered, interacting electron systems
is that of local moment formation and subsequent interaction. Anderson–Hubbard models
(AHM) are notionally the simplest with which to investigate such matters, wherein the many
complexities of strongly interacting electrons—captured at the level of the pure Hubbard
model—are compounded by the presence of disorder, leading to local moment formation on
a strongly inhomogeneous scale and a rich variety of potential magnetic and electric phases.

In this paper, we consider the magnetic properties of a site-disordered AHM at half-
filling on ad = 3 simple cubic lattice, focusing in particular on disordered antiferromagnetic
(AF) phases of the model. The approach taken derives from a technique recently developed
[1, 2] and applied to the ubiquitous AF phase of the corresponding pure Hubbard model,
the low-energy transverse spin excitations of which are mapped approximately onto those
of an effective Heisenberg model; the exchange couplings of the latter being determined
self-consistently, dependent on the on-site interactionU and nota priori constrained to
nearest-neighbour (NN) interactions. The mapping becomes exact in the strong-coupling
limit U/t →∞ (with t the hopping amplitude), where the Hubbard model maps rigorously
onto a spin-1/2 AF Heisenberg model with purely NN couplingsJ∞ = 4t2/U . More
significantly, for all but very low interaction strengths (U/t & 2−3), linear spin-wave theory
applied to the effective Heisenberg model is found [1, 3] to reproduce quantitatively the low-
energy spectral density of transverse spin excitations obtained for the pure Hubbard model
via a random-phase approximation (RPA) about the broken-symmetry (Néel) unrestricted
Hartree–Fock (UHF) ground state. And the latter approach—UHF+RPA—has been shown
by several groups [4, 5] to account well for the physics of thed > 2 half-filled Hubbard
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model on bipartite lattices atT = 0 (despite the incorrect, but not uncommonly asserted,
view that such an approach is intrinsically a weak-coupling one).

A distinct advantage of the effective spin Hamiltonian is that it suggests a potentially
straightforward route to thermodynamic properties of the Hubbard model in a temperature
regime dominated by the low-energy spin-wave-like excitations—one that in practice extends
well above the Ńeel temperature. For the thermal paramagnetic phase of the pure Hubbard
model, this has been considered [1, 2] via a simple Onsager reaction-field (ORF) approach.
The latter provides in effect a self-consistent modification of conventional molecular-field
theory to account for the effects of local spin correlations, that are crucial not only in
quantitative terms but also in obtaining agreement with e.g. the dimensional dictates of the
Mermin–Wagner theorem. For thed = 3 Hubbard model, the approach has been shown
[1, 2] to yield very good agreement with quantum Monte Carlo results for Néel temperatures,
magnetic susceptibilities and spin correlations over a wide range of temperatures and
interaction strengths; and, as discussed in reference [1], it appears to transcend successfully
the inherent limitations of a wide variety of previous approaches to finite-temperature
magnetism in the Hubbard model (see e.g. reference [6]).

The above strategy—both the mapping and the ORF approach—are generalizable to
magnetically ordered phases of the disordered AHM (where the mapping is again exact for
strong coupling [7]). This we consider here, drawing in particular on previous results for
both theT = 0 phase diagram of the AHM with Gaussian site disorder, obtained at the
mean-field level of broken-symmetry UHF [8]; and on the full collective excitation spectrum
about the inhomogeneous ground states [3] obtained via the RPA.

The theoretical approach, and the validity of the underlying mapping, are sketched
in section 2. In contrast to much conventional work on localized-spin magnetism, where
the distribution of exchange couplings is specifieda priori, the probability densities of
effective exchange couplings in the present problem stem from the underlying system of
interacting, itinerant electrons. These are considered and rationalized in section 3, together
with a discussion of the extent to which frustration is induced in the exchange coupling
distributions. The stability of the disordered AF phase with respect to zero-point quantum
spin fluctuations is then considered at one-loop level, and a microscopic rationale for the
stability of the phase suggested. Finite-temperature properties in the thermal paramagnetic
phase are considered in section 4. The ORF approach in the presence of disorder, and
its connection to other approaches, is first discussed. The effect of disorder on the Néel
temperature of the AHM is then considered, together with the predicted characteristics of
incipient magnetic ordering at the thermal phase boundary.

2. Theoretical approach

The Hamiltonian we consider is the site-disordered Anderson–Hubbard model (AHM):

H =
∑
i,σ

εiniσ − t
∑
〈ij〉,σ

c
†
iσ cjσ + 1

2U
∑
i,σ

niσ ni−σ (1)

wheret is the nearest-neighbour (NN) hopping matrix element,U is the on-site Coulomb
interaction and the〈ij〉 sum is over nearest-neighbour sites on ad = 3 simple cubic lattice.
The site energies{εi} are drawn randomly from a common Gaussian distributiong(ε) of
variance12, and we focus on half-filling. We here study the problem numerically, with
systems ofN = 216 sites, sampling a sufficient number of disorder realizations to gain
good statistics.
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An analysis of theT = 0 phase diagram of this model at UHF level is given in
reference [8]. All ground states are found to be Ising-like, with local moments lying along
a commonz-axis, and with〈S tot

z 〉HF = 0. The dominant magnetic phase in the(1/t, U/t)
plane is the disordered AF. Here, the magnitudes of the local momentsµi = 2〈Siz〉HF are
disordered, but their phases are locked in AF alignment, such that the magnetic structure
factorµ(q) = N−1|∑i µie

iq·ri | shows a strong peak atq = π, with little weight at other
q-vectors. At lowU/t ∼ 2–3 a transition [9] occurs to a SG phase, for whichµ(q) exhibits
peaks O(N−1) at manyq-vectors. A non-magnetic phase occurs at still smaller interaction
and disorder strengths, withµi = 0 for all sites. Metallic (M) and insulating (I) phases are
also found, with the dominant MIT being M→ gapless I, driven by Anderson localization
of quasiparticle states at the Fermi level.

Figure 1. Schematic density of RPA trans-
verse excitations in the non-disordered limit
(dashed line) and in the presence of significant
disorder (solid line).

For both the pure (1 = 0) Hubbard model [1, 4, 5] and the AHM [3], collective
particle–hole excitations about the underlying broken-symmetry mean-field ground states
follow via a random-phase approximation (RPA). For the Ising-like UHF ground states,
the RPA Hamiltonian block diagonalizes into two sectors [1, 9]: a transverse spin
channel corresponding to spin fluctuations away from the local moment axis, and a mixed
longitudinal spin and charge channel comprising excitations along this axis. The lowest-
energy collective excitations occur in the transverse spin channel, and include the zero-
frequency Goldstone modes describing a global spin rotation. For the pure Hubbard model,
as illustrated schematically in figure 1, the resultant transverse spin spectrum consists [1, 3]
of a prominent low-frequency band extending down to zero frequency, together with a high-
energy band of weakly renormalized Stoner-like excitations, to which there is a gap of the
order of the single-particle band gap of magnitudeU |µ| (where|µi | = |µ| ∀i). To a very
good approximation, the low-energy transverse spin excitations are found to be spin waves
for all but very lowU/t . Because of the gap to Stoner processes, thermodynamic properties
of the model are naturally governed by the spin-wave-like excitations up to temperatures
well in excess of the Ńeel temperatureTN, for all but the weakest interaction strengths.

In references [1, 2] it was shown that an effective underlying spin Hamiltonian which
accurately describes the low-energy excitations may be obtained by comparison of the linear
spin-wave equations of an arbitrary Heisenberg model with the site-resolved RPA equations
for the Hubbard model. The resultant Hamiltonian is given by

HHeis= 1
2

∑
i,j
(j 6=i)

JijSi · Sj (2)
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with S a spin-12 operator, and where the effective exchange couplings—which are not
confined to nearest neighbours—are given explicitly in terms of the static RPA transverse
susceptibilityχ(0) by

Jij = 2|µiµj |[χ−1(0)]ij j 6= i. (3)

The full frequency-dependent susceptibility matrixχ is in turn given by

χ(ω) = 0χ(ω)[I− U 0χ(ω)]−1 (4)

where0χ is the UHF transverse susceptibility

0χij (ω) = i
∫

dt eiωt 〈0|T {S−i (t)S+j }|0〉HF (5)

with |0〉HF the self-consistent UHF ground state. The mapping becomes exact asU/t →∞,
whereJij = 4t2/U for i, j nearest neighbours (NN) and zero otherwise; and for the pure
Hubbard model is found to be quantitatively accurate down toU/t ' 2–3. At all interaction
strengths, it preserves precisely the RPA zero-frequency transverse susceptibilities{χij (0)}.

We now consider the validity of the above mapping for the AHM. As discussed in
reference [1], the mapping is accurate provided that there is a persistent separation between
the low-energy spin-wave-like excitations and the higher-energy Stoner-like processes;
i.e. provided in practice that a discernible low-frequency band is present in the full RPA
spectrum, comprising transverse excitations with a significant degree of spin-wave-like
character.

The latter has been considered in detail in reference [3], and the typical effect of disorder
on the collective transverse spin spectrum is schematized in figure 1 (see also e.g. figure 5
of reference [3]). The gap between the spin-wave-like and Stoner-like bands becomes a
pseudogap, and the low-energy spin-wave-like band is softened with disorder; these effects
naturally becoming more pronounced with increasing disorder or diminishing interaction
strength. Nonetheless, as anticipated in reference [3] and confirmed by direct comparison
of the full RPA transverse spin spectrum with that arising from the effectiveHHeis, equation
(2), the mapping remains accurate throughout the major portion of the disordered AF phase
in the (1,U) plane, breaking down only on approaching the AF–SG border (occurring at
low U/t ∼ 2–3). It is therefore on the disordered AF phase of the AHM that we focus in
the present work.

3. Effective exchange couplings

For the pure Hubbard model [1, 2], the dominant exchange couplings for allU/t are
nearest neighbour (NN); next-nearest (2NN) and third-nearest-neighbour (3NN) couplings
are an order of magnitude smaller (although they have a significant effect on e.g.TN for
U/t . 15 [2]). For all interaction strengths the effective exchange couplings reinforce the
underlying antiferromagnetic structure of the mean-field ground state, i.e. they are positive
(antiferromagnetic) between sites on different sublattices and negative (ferromagnetic)
between sites on the same sublattice. AsU/t is lowered, NN exchange couplings are
diminished from their asymptotic formJNN = 4t2/U (which in practice is reached by
U/t ∼ 20), reaching a maximum atU/t ' 10 and decreasing steadily to zero thereafter
(see figure 5 below).

On the introduction of disorder, the dominant exchange couplings remain NN. Figure 2
shows the probability distribution,PNN(J ), of NN exchange couplings for fixedU/t = 12
and a range of values of1/t from 3 to 7.5. At the lowest value of1/t (figure 2(a)), a
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Figure 2. Probability distribution of nearest-neighbour exchange couplingsPNN(J ) for fixed
interaction strengthU/t = 12 and1/t = 3 (a), 4.5 (b), 6 (c) and 7.5 (d).

Figure 3. Probability distribution of local moment magnitudesP(|µ|) for fixed U/t = 12 and
1 = 3 (a), 4.5 (b), 6 (c) and 7.5 (d).

single sharp peak is evident, the maximum of which occurs very close to the corresponding
1/t = 0 value,J 0

NN/t = 0.241. Increasing1/t to 4.5 causes the main peak to erode,
together with the formation of a secondary peak centred onJ/t ∼ 0. For1/t = 6, the
two peaks are of comparable weight, while by1/t = 7.5 the secondary peak is clearly
dominant.

This bimodal behaviour ofPNN(J ) may be rationalized, using equation (3), in terms of
the probability distribution of local moment magnitudesP(|µ|). This is shown in figure 3
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for the same(1/t, U/t) values as in figure 2. As discussed in reference [8], strong local
moments exist on sites with bare site energies in the range|ε| . U/2, while sites outside
this range carry only weak moments. For1/t = 3 (figure 3(a)), virtually all sites carry
strong local moments, eroded only slightly from their1/t = 0 values: hence the dominance
of the single peak centred at∼J 0

NN. Increasing disorder (for givenU/t) reduces the fraction
of sites in the strong-moment range, with a concomitant increase in the number of relatively
weak moments (figures 3(b)–3(d)). Couplings between these weak moments account for
the secondary peak inPNN(J ), whose relative growth with increasing1/t naturally reflects
the increasing proportion of such sites.

Figure 4. Probability distribution of NN exchange couplingsPNN(J ) for fixed disorder strength
1/t = 3 andU/t = 12 (a), 9 (b), 6 (c) and 4.5 (d). For1 = 0, PNN(J ) = δ(J − J 0

NN),
indicated by an arrow.

A similar picture arises on fixing1/t = 3 and loweringU/t towards the AF–SG
border, as shown in figure 4. Here, the erosion of the ‘AF’ peak at positiveJ is more
pronounced, since decreasingU/t shifts its position towards zero, such that byU/t = 4.5
(figure 4(d)) it appears merely as a shoulder on the main peak atJ/t = 0. However,
though most exchange couplings are here very weak, NN couplings do still act to reinforce
the underlying antiferromagnetic structure, as can be seen in figure 5. This shows〈JNN〉,
where〈· · ·〉 denotes an average over all NN exchange couplings and disorder realizations,
as a function of interaction strength for fixed disorder1/t = 3; together with the1 = 0
limit, J 0

NN(U), for comparison (which has been discussed in detail in reference [2]). As
U/t is lowered from deep inside the AFI phase, both the disordered and non-disordered
systems show the same trend: an initial increase, followed by a steady decrease. In the
pure Hubbard model (1 = 0), for which the mean-field ground state has AFLRO for all
U/t , J 0

NN(U) naturally remains finite down to the weakest interaction strengths [1, 2]. In the
presence of disorder, by contrast, the occurrence of the SG phase at low interaction strengths
suggests that〈JNN〉 vanishes at finiteU/t . While numerically difficult to obtain accurately,
simple extrapolation of the1/t = 3 curve of figure 5 to〈JNN〉 = 0 leads toUc/t ' 3.5,
which is indeed close to the phase boundary between the mean-field AF and SG phases
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Figure 5. Average nearest-neighbour exchange coupling〈JNN〉 as a function of interaction
strengthU/t for 1/t = 3 (solid line) and1/t = 0 (dashed line). The1/t curve has been
extrapolated to the AF–SG border (dotted line), as discussed in the text.

[8, 9]. Notice also from figure 5 that, for sufficiently large interaction strengths, addition
of disorder enhances somewhat the average NN exchange coupling, an effect observed by
Ulmke et al [10] in their QMC study of the infinite-dimensional AHM. Finally, we add that
similar bimodal probability densities are found for 2NN and 3NN couplings, although (as
for the pure Hubbard model [1, 2]) these are typically an order of magnitude smaller than
the JNN.

Table 1. Percentage frustration in exchange couplings for1/t = 3.

U/t NN 2NN 3NN

12 1.48 5.01 6.33
9 5.19 15.59 14.03
6 13.36 31.43 25.27
4.5 23.68 41.43 33.58

We now consider the extent to which site-diagonal disorder introduces frustration into
the effective exchange couplings. As discussed above, the effective exchange couplings of
the pure Hubbard model exhibit no frustration whatever, reinforcing the underlying AFLRO
of the mean-field ground state at all levels. For the disordered AHM, we find that the
underlying magnetic ordering is again reinforced, but only on the average: frustration occurs,
even within the AF phase. The degree of frustration is however much less extensive than
might at first sight be suggested by thePNN(J ) distributions of figures 2 and 4 (reflecting
the fact that the{Jij }, given individually by equation (3), are not themselves independent
random variables but are rather strongly correlated). To demonstrate this, we define a bond
energyFij = Jijµiµj which, if negative, corresponds to a satisfied bond but, if positive,
corresponds to a frustrated bond. Figure 6 showsPNN(J ) for all bonds (dark shading),
and for frustrated NN bonds withFij > 0 (light shading), for(1/t, U/t) = (3, 6).
The frustrated bonds are confined solely to the vicinity of the peak atJ/t ∼ 0, which
corresponds to weak couplings between small moments. The large moments, which are
strongly coupled, by contrast exhibit no frustration at all, and form the antiferromagnetic



646 Y H Szczech et al

Figure 6. Probability distribution of nearest-neighbour exchange couplings for(1/t, U/t) =
(3, 6). Lighter shading denotes the probability distribution of frustrated couplings, as defined in
the text.

backbone of the structure. Table 1 shows the percentage of frustrated NN, 2NN and 3NN
bonds as a function of interaction strength for1/t = 3; 2NN and 3NN couplings are
more prone to frustration as one expects. As the interaction strength is decreased, and the
effect of disorder correspondingly increases, the degree of frustration increases at all levels,
consistent with an ultimate transition [8, 9] to a mean-field spin-glass-like (SG) phase as
interaction strength is further decreased.

Although frustrated bonds do occur, note that the Ising-like mean-field states of the
effective Heisenberg model are indeed stable for all cases considered above. This is
indicated by the facts that (i) for all sitesi, S̄izhW

i 6 0, with the local Weiss field given by
hW
i =

∑
j Jij S̄jz where the sum is overall sitesj andS̄jz = µj/|µj | = ±1; and (ii) the static

susceptibility matrix of the effectiveHHeis, equation (2), contains no negative eigenvalues.
This is correctly consistent with the fact that the corresponding mean-field UHF states of
the Hubbard model are true minima on the Hartree–Fock surface, and are stable against
collective particle–hole excitations [8].

To conclude this section, we examine the local sublattice magnetization reduction at
one-loop level. This is readily obtained via solution of the LSW equations for the effective
Heisenberg Hamiltonian in a site representation (see e.g. references [1, 11]). For the pure
Hubbard model, this was calculated in reference [1]. In the strong-coupling limit, the LSW
result [11] of a∼15% reduction in the local moment magnitude was correctly recovered.
The magnitude of the reduction decreases as the interaction strength is lowered, and the
Néel state appears stable against zero-point spin fluctuations throughout theU/t range.

In the presence of significant disorder, however, it is nota priori evident that the
above situation persists. As discussed in reference [3], disorder ‘softens’ the RPA collective
excitations, leading to a greater density of transverse spin excitations at low frequencies. We
anticipate, therefore, that the contribution of such excitations to the magnetization reduction
will be enhanced, and one may ask whether this ‘softening’ is sufficient to destroy the
long-ranged order of the mean-field ground state. Further, in the presence of disorder,
the magnetization reduction will of course be strongly site differential, dependent on the
distribution of spin waves of different energies over sites.

In fact, throughout the AF phase we find that quantum fluctuations are never strong
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Figure 7. Site-energy resolution of the magnetization reduction as defined in text, forU/t = 12
and1/t = 3 (a) and 6 (b). The corresponding1/t = 0 magnetization reduction is denoted by
a horizontal line.

enough to destroy the underlying magnetic order. Figure 7 illustrates the site-differential
character of the magnetization reduction. It shows(|µi | − mi)/|µi | (with mi the site
magnetization at one-loop level) as a function of the site energiesεi , for typical disorder
realizations atU/t = 12 and1/t = 3 (figure 7(a)) and 6 (figure 7(b)). In each case,
the strong local moments which occur on sites well within the range|ε| . U/2, and
whose magnitudes are close to the non-disordered value, are found to experience a one-
loop reduction similar to that at1 = 0, indicated by a horizontal line. Sites outside
these limits, which carry very small moments, have magnetization reductions approaching
zero. But a small fraction of sites close to the local moment boundaries (|ε| ' U/2) have
significant magnetization reductions. For1/t = 3 (figure 7(a)) these may be up to∼3
times the non-disordered value, although none of the moments is completely quenched.
On increasing disorder to1/t = 6 (figure 7(b)), however, some moment-boundary sites
have magnetization reductions in excess of unity, indicating that zero-point fluctuations are
sufficient to destroy their local moments. The bulk of the antiferromagnet is nonetheless
intact, implying that even at relatively large disorder strengths the local moment description
remains a good one.
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The site-differential nature of the magnetization reduction can be rationalized
microscopically in terms of the effect of disorder on the distribution and localization
properties of low-frequency collective excitations, discussed in detail in reference [3].
Figure 9 of reference [3] shows the site resolution of localized and delocalized low-frequency
excitations. Strong moments, which occur on sites with bare site energies|εi | ∼ 0, are
seen to contribute principally to delocalized excitations, which are essentially the remnants
of the q-resolvable spin waves of the1/t = 0 pure Hubbard model; these sites thus
have magnetization reductions similar to the1 = 0 value, as found above. Localized,
low-frequency excitations by contrast predominantly overlap sites at the local moment
boundaries—i.e. those in rare environments [8]—typically extending over only one or two
sites. It is these sites that experience the strong magnetization reductions which, with
increasing disorder, ultimately quench the moments; and that the quenching is local is why
the bulk of the AF, and in particular AFLRO, can remain intact.

4. Finite-temperature magnetism

Given the mapping onto an effective spin Hamiltonian, we now focus on the high-
temperature paramagnetic phase and consider the transition, as temperatureT is lowered,
to the magnetically ordered phase. For the pure Hubbard model ford = 3, a simple
Onsager reaction-field (ORF) approach to the effective Heisenberg model [1, 2] has been
found to yield a Ńeel temperatureTN which interpolates successfully between weak and
strong coupling, yielding a high-U/t asymptote within 3% of the accepted value from
high-temperature series expansions [12], as well as very good agreement with QMC results
for spin-correlation functions and static magnetic susceptibilities. In addition, this simple
approximation, which provides a self-consistent modification of conventional molecular-field
theory (MF) to include the effects of local spin correlations above the ordering temperature,
has been found to describe well the paramagnetic phase of thed = 2 Heisenberg model [13],
and the effect of dimensionality onTN and related quantities in thed = 2→ 3 anisotropic
Heisenberg model [14].

The fundamental thermal excitations of the pure Hubbard model fall into two sets [1, 2]:
the low-frequency transverse spin excitations, captured by the effective Heisenberg model
equation (2), which in essence describe orientational fluctuations of the local moments, occur
on an energy scale set by the effective exchange couplings{Jij } and determine the Ńeel
temperatureTN; and high-energy Stoner-like thermal excitations which describe longitudinal
fluctuations in the local moment magnitudes and have energies of the order of the single-
particle band gap (of magnitude12U |µ| and non-zero for allU/t > 0). At the level of
UHF alone, the latter destroy the local moments at a temperatureTHF, obtained by solving
the finite-temperature gap equation (equation (5.1) of reference [1]), which is found to go
asymptotically as1

4U , an asymptote reached in practice forU/t & 4 [1].
The important point is that this separation of energy scales, which persists [1, 2] over

a very wide range of interaction strengths down to weak coupling,U/t ∼ 2–3, translates
thermally into an appreciable temperature range above the Néel temperatureTN (�THF)

over which physical properties are dominated by the low-lying transverse spin excitations
captured byHHeis. The first effects of the Stoner processes on the local moment magnitudes
may nonetheless be simply included [1, 2] by replacing the zero-temperature|µi |s entering
equation (3) for the effective exchange couplings by their self-consistent finite-T values.
For1 = 0, this has a negligible effect on the Néel temperature for moderate to largeU/t
(although it is necessary for a sensible description of the small-U/t limit).

With disorder present, and throughout the major portion of the disordered AF phase we
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consider, the separation of energy scales described above remains largely intact as shown in
reference [5], evident e.g. from the persistence of a prominent spin-wave-like band in the full
RPA spectrum. We thus proceed in the same way as for the pure Hubbard model, including
likewise theT -dependence of the UHF momentsµi in the effective exchange couplings
(equation (3)), obtained via finite-T UHF [15, 16] on which some brief comments are first
made.

For the disordered phase of the AHM, as well as for the pure HM, extensive numerical
work [17] has shown that the finite-T UHF equations admit only a single low-temperature
Ising-like solution. BelowTHF the local moments remain collinear, with their ground-state
orientations; only their magnitudes vary with temperature, and while these are naturally
site differential with disorder present, all moments are found to vanish simultaneously at
THF. And THF(U,1) is found to be largely insensitive to disorder strength or the particular
disorder realization: a reduction of no more than 10% overTHF(U, 0) is found at the largest
disorder strengths studied.

4.1. Onsager reaction-field theory

The simplest starting point for a finite-temperature theory of the effective Heisenberg model
is familiar molecular-field (MF) theory. It proves notationally convenient to rewrite the
Hamiltonian as

H = − 1
2

∑
i 6=j

J ′ijSi · Sj (6)

with the trivial sign changeJ ′ij = −Jij (and the{Jij } given by equation (3)). The molecular-
field susceptibility is then given by

χMF = χ0[I− χ0J′]−1 (7)

whereχ0
ij = C/T δij is the Curie susceptibility matrix (C = S(S + 1)/3 with S = 1

2). The
molecular-field Ńeel temperature is the temperature at whichχMF first diverges on approach
from the high-temperature limit, i.e.T MF

N = CJmax whereJmax is the largest eigenvalue of
J′. In the pure Hubbard model,χMF is q-resolvable; the first divergence inχMF(q) occurs
at q = π, indicating that the transition is to a perfectly ordered antiferromagnetic phase. In
the presence of disorder, the site resolution orq-resolution of the eigenvector corresponding
to Jmax yields information concerning the nature of the incipient magnetic ordering, the sites
on which moments first form and their initial rate of growth (discussed in section 4.3).

The principal, acute failure of molecular-field theory is of course its inability to describe
the effects of short-range ordering above the temperature at which long-ranged order sets in.
This is alleviated by an ORF treatment, the basic idea of which [18] is that the correct local
field to which the spin responds is the field in the absence of the spin in question—thecavity
field—rather than the molecular (Weiss) field. The cavity field is obtained by subtracting
from the molecular field the reaction field,hRF

i , given byhRF
i = −〈Si〉λi(T ) where

λi(T ) =
∑
j

〈Si · Sj 〉
S(S + 1)

J ′ij . (8)

The ORF susceptibility matrix, obtained in direct analogy to molecular-field theory but with
a spin responding to its cavity field, is then given by

χ = χ0[I− χ0(J′ − λ)]−1 (9)

where the local reaction-field matrix [λ]ij = λi(T )δij . To determine the latter self-
consistently we enforce the fluctuation-dissipation theorem in its high-temperature form:
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〈Si ·Sj 〉 = 3T χij and, in particular,χii = C/T for eachsite i. Equation (8) thus becomes
a coupled set ofN self-consistency equations for theλi(T ), namely

λi(T ) =
∑
j

([I− χ0(J′ − λ)]−1)ij J
′
ij . (10)

The susceptibility matrix then follows directly; and from equation (9) the ORF transition
temperature is that for which the largest eigenvalue ofJ′ − λ becomes equal toT/C, with
the corresponding eigenvector describing the nature of incipient ordering at the transition.

Before presenting the results of the above treatment, we comment on the connection
between the ORF approach and the spherical approximation. In the non-disordered
limit, and within the high-T paramagnetic phase, the ORF is equivalent to the mean-
spherical approximation [19, 20] (MSA). This is not so in the presence of disorder.
The mean-spherical constraintN−1∑

i〈S2
i 〉 = C is in fact equivalent to enforcing the

fluctuation-dissipation theoremonly on average. This is incorrect for the present system:
a clear symptom is that, in the high-temperature limit, while the mean local susceptibility
〈χ〉 = N−1∑

i χii is given by the Curie law, individual sites may have susceptibilities
considerably in excess of the free-spin value—an obviously unphysical result. Further, it
fails to capture any inhomogeneity in the local reaction field, which is important in describing
the ordering transition at moderate to large disorder, as discussed in the following sections.
The two approximations become equivalent for a disordered system only in the limit of
infinite-ranged interactions (such as the Sherrington–Kirkpatrick model for a spin glass
[21]) where local inhomogeneities are eliminated.

Finally we note that, for an arbitrary disordered Heisenberg model, the correct
functional-integral analogue of ORF is the saddle point approximation obtained by taking
the limit of infinite spin dimensions [22]. This approach may be shown to yield results for
the paramagnetic phase identical to those of ORF discussed in the present work.

Figure 8. ORF Ńeel temperatureTN of the AHM for U/t = 12 as a function of the disorder
strength (solid line); the MF temperatureT MF

N is shown for comparison (dashed line).

4.2. Thermal phase diagram of the AHM

Figure 8 shows the effect of disorder on the ORF Néel temperatureTN for fixed interaction
strengthU/t = 12; the molecular-fieldT MF

N is shown for comparison. TheTN shown is an
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average over many disorder realizations at any1/t point, and we add that little variation in
the ordering temperature is found from realization to realization. BothTN andT MF

N show the
same trend with increasing disorder: a slight initial increase, consistent with the disorder-
induced strengthening of the exchange couplings (see section 3 and figure 5), followed by a
steady decline as the exchange couplings correspondingly decrease. Note that the ORF Néel
temperature is always considerably lower thanT MF

N , indicating that short-ranged ordering
above the Ńeel temperature is significant at all disorder strengths.

Figure 9. The ratioG = T MF
N /TN as a function of interaction strength for1/t = 3 (solid line).

Also shown is the1/t = 0 result (dotted), andG obtained via the MSA (dashed line).

An interesting aspect of the role of disorder is the increasing importance of short-range
order effects asU/t is lowered. This is illustrated by considering the ratio of the molecular-
field Néel temperatureT MF

N to the ORF Ńeel temperatureTN: G = T MF
N /TN. The greater

the degree of short-ranged order sustainable aboveTN, the lower the temperature at which
long-ranged order sets in, and the higher the value ofG. Figure 9 shows the variation of
G with U/t for 1/t = 3, together with the1/t = 0 result for comparison. AsU/t →∞,
both curves tend towards the limitG = 1.516 for the non-disordered NN AF Heisenberg
model [13].

As U/t is reduced from the strong-coupling limit,G for the pure Hubbard model
decreases steadily, consistent with the increasing range of effective spin interactions [1, 2]
and the consequent improvement in accuracy of molecular-field theory. With disorder
present, however, very different behaviour is observed:G actually increasesrapidly with
decreasingU/t below ∼6, showing the increasing importance of local spin fluctuations
asU/t is decreased towards the value (U/t ' 3) at which, forT = 0, the UHF mean-
field ground state becomes a SG. This concurs with an argument given by Cyrot [23] that
inclusion of reaction-field effects in a spin-glass phase is crucial (and indeed the celebrated
TAP equations [24] for a classical spin glass amount to an approximate inclusion of such
effects [25, 26]). Finally, figure 9 also showsG obtained for1/t = 3 via the MSA, the
behaviour of which is qualitatively akin to that in the absence of disorder; this illustrates
further the deficiencies of the MSA with disorder present, as discussed above.

Figure 8 also illustrates a somewhat counterintuitive effect of disorder onTN: for
sufficiently largeU/t , increasing disorder initiallyraisesthe Ńeel temperature, at both MF
and ORF levels. This effect was also observed by Ulmkeet al [10] in quantum Monte Carlo
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Figure 10. MF Néel temperatureT MF
N /t∗ as a function ofU/t∗ with t∗ = 2

√
6t , for thed = 3

simple cubic lattice with semi-elliptic site disorder of full width1. For fixed disorder1/t∗ = 0
(solid line), 2 (open circles), 4 (solid circles) and 6 (triangles).

(QMC) studies of an infinite-dimensional Anderson–Hubbard model on a Bethe lattice, with
both semi-elliptic and binary-alloy-type site-disorder distributions: figure 4(b) of reference
[10] shows the Ńeel temperature as a function ofU/t∗ wheret = t∗/2√z (with coordination
numberz→∞), for uncorrelated semi-elliptic disorder of (full) width1/t∗ = 0, 2, 4, 6; the
enhancement of the Ńeel temperature by disorder is particularly evident in the difference
between the1/t∗ = 2 and1/t∗ = 4 curves. To compare the present theory with the
d = ∞ QMC results, we have repeated ourd = 3 calculations for semi-elliptic site-
disorder distributions; and we consider explicitlyT MF

N , since ORF corrections vanish in the
large-d limit and molecular-field theory becomes exact for strong coupling [13]. Figure 10
shows the resultantT MF

N , scaled by the appropriatet∗ = 2
√

6t , as a function ofU/t∗ for
a semi-elliptic distribution of site energies of width1/t∗ = 0, 2, 4, 6. (Since our theory is
inapplicable in the spin-glass regime, results are shown only for values ofU/t∗ yielding an
antiferromagnetic ordered phase.)

Clearly, the trends observed ford = ∞ are also observed for the present system. In
particular, for sufficiently largeU/t∗, T MF

N is enhanced by initially increasing disorder.
This is seen directly in figure 8, and reflects the disorder-induced enhancement of effective
exchange couplings illustrated in figure 5 (and discussed above); the microscopic origins of
the latter have been given in reference [10]. One quantitative difference between figure 10
and the results of reference [10] is worth noting: for largeU/t∗, T d=∞N > T MF

N (d = 3), since
the effects of low-energy spin waves, which act to reduce the effective exchange couplings
and hence the Ńeel temperature from its ‘Ising’ value, are entirely absent ford = ∞ [27].
Although the strong qualitative similarity between figure 10 and figure 4 of reference [10]
is very encouraging, we remind the reader that the ‘correct’ ordering temperature for the
finite-d system is the ORFTN, which is reduced from its molecular-field counterpart by
reaction-field effects, analogously to the behaviour shown in figure 8.

4.3. Nature of the paramagnetic–antiferromagnetic transition

While the ORF theory discussed in section 4.1 applies only to the paramagnetic regime,
it can give insight into the nature of the state into which the system condenses: at the
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Néel temperature, the spatial distribution of the eigenvector corresponding to the divergent
eigenvalue ofχ, equation (9), yields information on which sites first obtain moments,
their relative phases and initial rate of growth. The eigenvectorsΦα of χ are defined via∑
j χij8jα = γα8iα (with γα the associated eigenvalue), and the{8jα} describe the spatial

distribution over sites of the eigenvector. At molecular-field level, the eigenvectors ofχMF

(equation (7)) are solely those of the exchange-coupling matrixJ′; while at ORF level by
contrast the diagonal elements{λi(T )} (see equation (10)) are in addition self-consistently
determined for each site, and vary strongly withT as the Ńeel temperatureTN is approached.

For the pure Hubbard model, the Fourier-resolved susceptibilityχ(q) first diverges at
q = π for all U/t , implying that the low-temperature phase has AFLRO. In a disordered
system, we anticipate the possibility of contributions to the divergent eigenmode from many
q-vectors. This raises the possibility that, for sufficiently strong disorder, the eigenvector
may be localized in the Anderson sense [28, 29]. The eigenvalue spectrum ofχ is
formally equivalent to that of a tight-binding model with correlated diagonal and off-
diagonal disorder. Following conventional arguments (see e.g. reference [30]), states at
the band edges of the spectrum tend to be the first to localize, with states near the centre
remaining extended up to larger values of the disorder. (Note that this scenario could not
arise in an effective spin model with infinite-ranged interactions, such as the SK model,
where all eigenvectors ofχ are inevitably extended [25], or in infinite dimensions.) For
short-ranged models, a predicted condensation via a localized mode cannot represent a
true phase transition. Hertzet al [29] have argued that the true transition temperature
and corresponding magnetic ordering are in this case given by the first extended eigenstate
(i.e. the state at the upper mobility edge) in the spectrum ofχ.

Our first interest is to assess whether the Néel temperature, shown in figure 8,
corresponds to a genuine phase transition. Finite-size calculations cannot of course yield
definitive information on localization, but are we believe sufficient to permit qualitative
conclusions to be drawn. The inverse participation ratio [31] (IPR) defined byLα =

∑
i 8

4
iα

for any eigenmodeα, is a convenient means of distinguishing localized from extended
eigenvectors.Lα = 1 for an atomically localized eigenvector, while for an infinite system
Lα = 0 for an extended state. In a finite-size system, whereL > 0 necessarily, a size-
dependent IPR threshold separating localized and extended modes ought in principle to be
established by finite-size scaling. In the present problem this is computationally prohibitive,
and we adopt a threshold ofL ∼ 0.05–0.1 (as appropriate to a disordered tight-binding
model at the chosen system size ofN = 216 [32]). This should not itself be taken very
seriously: its purpose here is purely qualitative.

For U/t = 12 (appropriate to figure 8 forTN), and for all values of1/t studied (up
to 1/t = 7.5), the divergent eigenvector in both the MF and ORF treatments is in fact
found to be clearly extended, with an IPR well below the above threshold. This leads us to
believe that the condensation atTN indeed represents a genuine phase transition to a state
with magnetic LRO. It is further supported byq-resolution of the divergent eigenvectors:
although increasingly ‘dirtied’ by disorder, these are strongly peaked atq = π, with little
weight at otherq-vectors. The thermal transition is thus to a disordered AF phase, and the
above results concur well with the behaviour of theT = 0 UHF local moment structure
factorµ(q), discussed in section 2.

Finally, for U/t = 12 and1/t = 7.5, figure 11 shows the site-energy resolution of the
ordering vectorΦm, given by|8(ε)| = N−1

ε

∑
i:εi=ε |8im|2 (with Nε the number of sites of

given site energyε). This has greatest weight on those sites with|ε| . U/2 which, atT = 0,
carry large UHF local moments; and that the initial rate of condensation is greatest for such
sites is implied by the distribution of exchange couplings described in section 3: it is these
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Figure 11. Site-energy resolution of the eigenvector corresponding to the divergent eigenvalue
of χ, |φ(ε)| (solid, left-hand scale); and the correspondingT = 0 UHF local moment profile
|µ(ε)| (dotted, right-hand scale) for(1/t, U/t) = (7.5, 12).

sites that have the largest localJijs and hence the strongest internal, ordering fields. In fact,
the |8(ε)| is in striking accord with the local moment profile|µ(ε)| = N−1

ε

∑
i:εi=ε |µi | for

the T = 0 UHF moments, also shown in figure 11.
In summary, we have investigated the disordered antiferromagnetic phase of the

Anderson–Hubbard model via a mapping, atT = 0, of its low-energy transverse spin
excitations onto those of a self-consistent underlying Heisenberg model. Taking it in
conjunction with a simple Onsager reaction-field approach to the thermal paramagnetic
phase, we have used the mapping to study the Néel temperature as a function of disorder
and interaction strengths, and the nature of the ordering transition. The mapping may also
in principle be used to investigate thermal properties of the low-temperature magnetically
ordered state, although extension of the ORF approach to ordered phases has yet to be
obtained, even for the classical Ising model; we are currently working on this problem.
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